问题
你有个程序要执行 CPU 密集型工作,你想让他利用多核 CPU 的优势来运行的快一点。
解决方案
concurrent.futures 库提供了一个 ProcessPoolExecutor 类,可被用来在一个单独的 Python 解释器中执行计算密集型函数。不过,要使用它,你首先要有一些计算密集型的任务。我们通过一个简单而实际的例子来演示它。假定你有个 Apache web 服务器日志目录的 gzip 压缩包:

20120701.log.gz
20120702.log.gz
20120703.log.gz
20120704.log.gz
20120705.log.gz
20120706.log.gz
...

进一步假设每个日志文件内容类似下面这样:

210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /ply/ ..." 200 11875
210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] "GET /favicon.ico ..." 404 369
61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] "GET /blog/atom.xml ..." 304 -
...

下面是一个脚本,在这些日志文件中查找出所有访问过 robots.txt 文件的主机:

import gzip
import io
import glob
def find_robots(filename):
'''
Find all of the hosts that access robots.txt in a single log file
'''
robots = set()
with gzip.open(filename) as f:
for line in io.TextIOWrapper(f,encoding='ascii'):
fields = line.split()
if fields[6] == '/robots.txt':
robots.add(fields[0])
return robots
def find_all_robots(logdir):
'''
Find all hosts across and entire sequence of files
'''
files = glob.glob(logdir+'/*.log.gz')
all_robots = set()
for robots in map(find_robots, files):
all_robots.update(robots)
return all_robots
if __name__ == '__main__':
robots = find_all_robots('logs')
for ipaddr in robots:
print(ipaddr)

前面的程序使用了通常的 map-reduce 风格来编写。函数 find_robots() 在一个文件名集合上做 map 操作,并将结果汇总为一个单独的结果,也就是 find_all_robots()函数中的 all_robots 集合。现在,假设你想要修改这个程序让它使用多核 CPU。很简
单——只需要将 map() 操作替换为一个 concurrent.futures 库中生成的类似操作即可。下面是一个简单修改版本:

import gzip
import io
import glob
from concurrent import futures
def find_robots(filename):
'''
Find all of the hosts that access robots.txt in a single log file
'''
robots = set()
with gzip.open(filename) as f:
for line in io.TextIOWrapper(f,encoding='ascii'):
fields = line.split()
if fields[6] == '/robots.txt':
robots.add(fields[0])
return robots
def find_all_robots(logdir):
'''
Find all hosts across and entire sequence of files
'''
files = glob.glob(logdir+'/*.log.gz')
all_robots = set()
with futures.ProcessPoolExecutor() as pool:
for robots in pool.map(find_robots, files):
all_robots.update(robots)
return all_robots
if __name__ == '__main__':
robots = find_all_robots('logs')
for ipaddr in robots:
print(ipaddr)

通过这个修改后,运行这个脚本产生同样的结果,但是在四核机器上面比之前快了
3.5 倍。实际的性能优化效果根据你的机器 CPU 数量的不同而不同。
讨论
ProcessPoolExecutor 的典型用法如下:

with ProcessPoolExecutor() as pool:
...
do work in parallel using pool
...

其原理是,一个 ProcessPoolExecutor 创建 N 个独立的 Python 解释器,N 是系统上面可用 CPU 的个数。你可以通过提供可选参数给 ProcessPoolExecutor(N) 来修改处理器数量。这个处理池会一直运行到 with 块中最后一个语句执行完成,然后处理池被关闭。不过,程序会一直等待直到所有提交的工作被处理完成。
被提交到池中的工作必须被定义为一个函数。有两种方法去提交。如果你想让一个列表推导或一个 map() 操作并行执行的话,可使用 pool.map() :

def work(x):
...
return result
# Nonparallel code
results = map(work, data)
# Parallel implementation
with ProcessPoolExecutor() as pool:
results = pool.map(work, data)

另外,你可以使用 pool.submit() 来手动的提交单个任务:

def work(x):
...
return result
with ProcessPoolExecutor() as pool:
...
# Example of submitting work to the pool
future_result = pool.submit(work, arg)
# Obtaining the result (blocks until done)
r = future_result.result()
...

如果你手动提交一个任务,结果是一个 Future 实例。要获取最终结果,你需要调用它的 result() 方法。它会阻塞进程直到结果被返回来。
如果不想阻塞,你还可以使用一个回调函数,例如:

print('Got:', r.result())
with ProcessPoolExecutor() as pool:
future_result = pool.submit(work, arg)
future_result.add_done_callback(when_done)

回调函数接受一个 Future 实例,被用来获取最终的结果(比如通过调用它的result() 方法)。尽管处理池很容易使用,在设计大程序的时候还是有很多需要注意的地方,如下几点:
• 这种并行处理技术只适用于那些可以被分解为互相独立部分的问题。
• 被提交的任务必须是简单函数形式。对于方法、闭包和其他类型的并行执行还不支持。
• 函数参数和返回值必须兼容 pickle,因为要使用到进程间的通信,所有解释器之间的交换数据必须被序列化
• 被提交的任务函数不应保留状态或有副作用。除了打印日志之类简单的事情,一旦启动你不能控制子进程的任何行为,因此最好保持简单和纯洁——函数不要去修改环境。
• 在 Unix 上进程池通过调用 fork() 系统调用被创建,它会克隆 Python 解释器,包括 fork 时的所有程序状态。而在 Windows 上,克隆解释器时不会克隆状态。实际的 fork 操作会在第一次调用 pool.map() 或 pool.submit()后发生。
• 当你混合使用进程池和多线程的时候要特别小心。
你应该在创建任何线程之前先创建并激活进程池(比如在程序启动的 main 线程中创建进程池)。

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐