Python基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络分类模型(CNN-BiLSTM分类算法)项目实战
Python基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络分类模型(CNN-BiLSTM分类算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
随着人工智能技术的快速发展,深度学习已经成为处理复杂数据集的关键工具之一。其中,卷积神经网络 (Convolutional Neural Networks, CNNs) 和长短时记忆网络 (Long Short-Term Memory, LSTM) 是两种广泛应用的深度学习模型。CNN 能够有效地捕捉局部特征和空间结构,而 LSTM 则擅长处理序列数据中的长期依赖关系。将这两种模型结合起来,形成 CNN-BiLSTM 架构,可以同时利用它们的优势,以处理包含时空特征的数据集。
本项目基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络分类模型(CNN-BiLSTM分类算法)项目实战。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 |
变量名称 |
描述 |
1 |
x1 |
|
2 |
x2 |
|
3 |
x3 |
|
4 |
x4 |
|
5 |
x5 |
|
6 |
x6 |
|
7 |
x7 |
|
8 |
x8 |
|
9 |
x9 |
|
10 |
x10 |
|
11 |
y |
因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量柱状图
用Matplotlib工具的plot()方法绘制柱状图:
4.2 y=1样本x1变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.3 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
5.3 数据样本增维
数据样本增加维度后的数据形状:
6.构建卷积神经网络-双向长短时记忆循环神经网络分类模型
主要使用CNN-BiLSTM分类算法,用于目标分类。
6.1 构建模型
编号 |
模型名称 |
参数 |
1 |
CNN-BiLSTM分类模型 |
filters=5 |
2 |
units=64 |
|
3 |
epochs=60 |
6.2 模型摘要信息
6.3 模型网络结构
6.4 模型训练集测试集损失和准确率曲线图
7.模型评估
7.1评估指标及结果
评估指标主要包括准确率、查准率、查全率、F1分值等等。
模型名称 |
指标名称 |
指标值 |
测试集 |
||
CNN-BiLSTM分类模型 |
准确率 |
0.9975 |
查准率 |
1.0 |
|
查全率 |
0.9953 |
|
F1分值 |
0.9976 |
从上表可以看出,F1分值为0.9976,说明模型效果很好。
关键代码如下:
7.2 分类报告
从上图可以看出,分类为0的F1分值为1.00;分类为1的F1分值为1.00。
7.3 混淆矩阵
从上图可以看出,实际为0预测不为0的 有0个样本;实际为1预测不为1的 有1个样本,整体预测准确率良好。
8.结论与展望
综上所述,本文采用了卷积神经网络-双向长短时记忆循环神经网络分类算法来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。
更多推荐
所有评论(0)