前言:前文介绍了RNN概念及其分类,本文讲解传统RNN。

一、传统RNN内部结构&计算

在这里插入图片描述
结构解释图
在这里插入图片描述
内部结构分析: * 主要是中间的方块部分, 它的输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的输入, 它们进入RNN结构体后, 会"融合"到一起, 这种融合我们根据结构解释可知, 是将二者进行拼接, 形成新的张量[x(t), h(t-1)], 之后这个新的张量将通过一个全连接层(线性层), 该层使用tanh作为激活函数, 最终得到该时间步的输出h(t), 它将作为下一个时间步的输入和x(t+1)一起进入结构体. 以此类推。

在这里插入图片描述
根据结构分析得出内部计算公式:

在这里插入图片描述

激活函数tanh的作用:

  • 用于帮助调节流经网络的值, tanh函数将值压缩在-1和1之间。

在这里插入图片描述

二、使用Pytorch构建RNN模型

位置: 在torch.nn工具包之中, 通过torch.nn.RNN可调用

(一)nn.RNN使用示例1

import torch
import torch.nn as nn

def  dm_rnn_for_base():
    '''
    第一个参数:input_size(输入张量x的维度)
    第二个参数:hidden_size(隐藏层的维度, 隐藏层的神经元个数)
    第三个参数:num_layer(隐藏层的数量)
    '''
    rnn = nn.RNN(5, 6, 1) #A

    '''
    第一个参数:sequence_length(输入序列的长度)
    第二个参数:batch_size(批次的样本数量)
    第三个参数:input_size(输入张量的维度)
    '''
    input = torch.randn(1, 3, 5) #B

    '''
    第一个参数:num_layer * num_directions(层数*网络方向)
    第二个参数:batch_size(批次的样本数)
    第三个参数:hidden_size(隐藏层的维度, 隐藏层神经元的个数)
    '''
    h0 = torch.randn(1, 3, 6) #C

    # [1,3,5],[1,3,6] ---> [1,3,6],[1,3,6]
    output, hn = rnn(input, h0)

    print('output--->',output.shape, output)
    print('hn--->',hn.shape, hn)
    print('rnn模型--->', rnn)

# 程序运行效果如下:
output---> torch.Size([1, 3, 6]) tensor([[[ 0.8947, -0.6040,  0.9878, -0.1070, -0.7071, -0.1434],
         [ 0.0955, -0.8216,  0.9475, -0.7593, -0.8068, -0.5549],
         [-0.1524,  0.7519, -0.1985,  0.0937,  0.2009, -0.0244]]],
       grad_fn=<StackBackward0>)

hn---> torch.Size([1, 3, 6]) tensor([[[ 0.8947, -0.6040,  0.9878, -0.1070, -0.7071, -0.1434],
         [ 0.0955, -0.8216,  0.9475, -0.7593, -0.8068, -0.5549],
         [-0.1524,  0.7519, -0.1985,  0.0937,  0.2009, -0.0244]]],
       grad_fn=<StackBackward0>)

rnn模型---> RNN(5, 6)

(二)nn.RNN使用示例2

# 输入数据长度发生变化
def  dm_rnn_for_sequencelen():
    '''
    第一个参数:input_size(输入张量x的维度)
    第二个参数:hidden_size(隐藏层的维度, 隐藏层的神经元个数)
    第三个参数:num_layer(隐藏层的数量)
    '''
    rnn = nn.RNN(5, 6, 1) #A
    '''
    第一个参数:sequence_length(输入序列的长度)
    第二个参数:batch_size(批次的样本数量)
    第三个参数:input_size(输入张量的维度)
    '''
    input = torch.randn(20, 3, 5) #B
    '''
    第一个参数:num_layer * num_directions(层数*网络方向)
    第二个参数:batch_size(批次的样本数)
    第三个参数:hidden_size(隐藏层的维度, 隐藏层神经元的个数)
    '''
    h0 = torch.randn(1, 3, 6) #C

    # [20,3,5],[1,3,6] --->[20,3,6],[1,3,6]
    output, hn = rnn(input, h0)  #

    print('output--->', output.shape)
    print('hn--->', hn.shape)
    print('rnn模型--->', rnn)

# 程序运行效果如下: 
output---> torch.Size([20, 3, 6])
hn---> torch.Size([1, 3, 6])
rnn模型---> RNN(5, 6)

(三)nn.RNN使用示例3

def dm_run_for_hiddennum():
    '''
    第一个参数:input_size(输入张量x的维度)
    第二个参数:hidden_size(隐藏层的维度, 隐藏层的神经元个数)
    第三个参数:num_layer(隐藏层的数量)
    '''
    rnn = nn.RNN(5, 6, 2)  # A 隐藏层个数从1-->2 下面程序需要修改的地方?
    '''
    第一个参数:sequence_length(输入序列的长度)
    第二个参数:batch_size(批次的样本数量)
    第三个参数:input_size(输入张量的维度)
    '''
    input = torch.randn(1, 3, 5)  # B
    '''
    第一个参数:num_layer * num_directions(层数*网络方向)
    第二个参数:batch_size(批次的样本数)
    第三个参数:hidden_size(隐藏层的维度, 隐藏层神经元的个数)
    '''
    h0 = torch.randn(2, 3, 6)  # C

    output, hn = rnn(input, h0)  #
    print('output-->', output.shape, output)
    print('hn-->', hn.shape, hn)
    print('rnn模型--->', rnn)  # nn模型---> RNN(5, 6, num_layers=11)

    # 结论:若只有一个隐藏次 output输出结果等于hn
    # 结论:如果有2个隐藏层,output的输出结果有2个,hn等于最后一个隐藏层

# 程序运行效果如下: 
output--> torch.Size([1, 3, 6]) tensor([[[ 0.4987, -0.5756,  0.1934,  0.7284,  0.4478, -0.1244],
         [ 0.6753,  0.5011, -0.7141,  0.4480,  0.7186,  0.5437],
         [ 0.6260,  0.7600, -0.7384, -0.5080,  0.9054,  0.6011]]],
       grad_fn=<StackBackward0>)
hn--> torch.Size([2, 3, 6]) tensor([[[ 0.4862,  0.6872, -0.0437, -0.7826, -0.7136, -0.5715],
         [ 0.8942,  0.4524, -0.1695, -0.5536, -0.4367, -0.3353],
         [ 0.5592,  0.0444, -0.8384, -0.5193,  0.7049, -0.0453]],

        [[ 0.4987, -0.5756,  0.1934,  0.7284,  0.4478, -0.1244],
         [ 0.6753,  0.5011, -0.7141,  0.4480,  0.7186,  0.5437],
         [ 0.6260,  0.7600, -0.7384, -0.5080,  0.9054,  0.6011]]],
       grad_fn=<StackBackward0>)
rnn模型---> RNN(5, 6, num_layers=2)

三、传统RNN优缺点

(一)传统RNN的优势

由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异。

(二)传统RNN的缺点

传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.

(三)梯度消失或爆炸介绍

根据反向传播算法和链式法则, 梯度的计算可以简化为以下公式:

在这里插入图片描述

其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失.;反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸。

梯度消失或爆炸的危害:

  • 如果在训练过程中发生了梯度消失,权重无法被更新,最终导致训练失败; 梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值)。

今天的分享到此结束。

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐