贪心算法详解
贪心算法(greedy algorithm ,又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,算法得到的是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择 。贪心算法一般按如下步骤进行:①建立数学模型来描述问题 。②把求解的问题分成若干个子问题 。③对每个子问题求解,得到子问题的局部最优解。④把子问题的解
一、什么是贪心?
贪心算法(greedy algorithm ,又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,算法得到的是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择 。
二、算法思路
①建立数学模型来描述问题 。
②把求解的问题分成若干个子问题 。
③对每个子问题求解,得到子问题的局部最优解。
④把子问题的解局部最优解合成原来解问题的一个解。
贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。贪心算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择,就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解。虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪心算法不要回溯。
三、算法特性
1、有一个以最优方式来解决的问题。为了构造问题的解决方案,有一个候选的对象的集合:比如不同面值的硬币。
2、随着算法的进行,将积累起其他两个集合:一个包含已经被考虑过并被选出的候选对象,另一个包含已经被考虑过但被丢弃的候选对象。
3、有一个函数来检查一个候选对象的集合是否提供了问题的解答。该函数不考虑此时的解决方法是否最优 。
4、还有一个函数检查是否一个候选对象的集合是可行的,即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样,此时不考虑解决方法的最优性 。
5、选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解 。
四、存在问题
1、不能保证解是最佳的。因为贪心算法总是从局部出发,并没从整体考虑;
2、贪心算法一般用来解决求最大或最小解;
3、贪心算法只能确定某些问题的可行性范围 。
五、应用实例
例如,平时购物找零钱时,为使找回的零钱的硬币数最少,不要求找零钱的所有方案,而是从最大面值的币种开始,按递减的顺序考虑各面额,先尽量用大面值的面额,当不足大面值时才去考虑下一个较小面值,这就是贪心算法。
有很多经典的应用,比如霍夫曼编码,普利姆和克鲁斯卡尔最小生成树算法,还有迪杰斯特拉单源最短路径算法,都是使用了这种思维。

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。
更多推荐
所有评论(0)