python使用sklearn的PrecisionRecallDisplay来可视化PR曲线
python使用sklearn的PrecisionRecallDisplay来可视化PR曲线目录python使用sklearn的PrecisionRecallDisplay来可视化PR曲线#模型构建#PrecisionRecallDisplay来可视化PR曲线#模型构建print(__doc__)from sklearn.datasets import fetch_openmlfrom sklea
·
python使用sklearn的PrecisionRecallDisplay来可视化PR曲线
目录
python使用sklearn的PrecisionRecallDisplay来可视化PR曲线
#PrecisionRecallDisplay来可视化PR曲线
#模型构建
print(__doc__)
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
X, y = fetch_openml(data_id=1464, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y)
clf = make_pipeline(StandardScaler(), LogisticRegression(random_state=0))
clf.fit(X_train, y_train)
#PrecisionRecallDisplay来可视化PR曲线
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay
prec, recall, _ = precision_recall_curve(y_test, y_score,
pos_label=clf.classes_[1])
pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot()
参考:RocCurveDisplay
参考:受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线)

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。
更多推荐
所有评论(0)