难度:夯实基础⭐⭐
语言:Python3、TensorFlow2

要求:
找到并处理《第T8周:猫狗识别》的程序问题(本文给出了答案)。

拔高(可选):
1.请尝试增加数据增强部分内容以提高准确率。
2.可以使用哪些方式进行数据增强?(《第T10周:数据增强》给出了答案)。

探索(难度有点大)
本文中的代码存在较大赘余,请对代码进行精简。

我的环境:
●操作系统:ubuntu 22.04
●语言环境:python 3.8.10
●编译器:jupyter notebook
●深度学习框架:tensorflow-gpu 2.9.0
●显卡(GPU):RTX 3090(24GB) * 1
●数据集:猫狗识别数据集

一、前期工作

  1. 设置GPU(如果使用的是CPU可以注释掉这部分的代码)
import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

代码输出:

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
  1. 导入数据
import numpy as np
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./T9/data"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

代码输出:

图片总数为: 3400

二、数据预处理

  1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。

batch_size = 64
img_height = 224
img_width  = 224

TensorFlow版本是2.2.0的同学可能会遇到module ‘tensorflow.keras.preprocessing’ has no attribute 'image_dataset_from_directory’的报错,升级一下TensorFlow就OK了。

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

代码输出:

Found 3400 files belonging to 2 classes.
Using 2720 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

代码输出:

Found 3400 files belonging to 2 classes.
Using 680 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

代码输出:

['cat', 'dog']
len(class_names)

代码输出:

2
  1. 再次检查数据
for image_batch, labels_batch in train_ds.take(1):
    print(image_batch.shape)
    print(labels_batch.shape)
    break

代码输出:

(64, 224, 224, 3)
(64,)

● Image_batch是形状的张量(64, 224, 224, 3)。这是一批形状224x224x3的64张图片(最后一维指的是彩色通道RGB)。
● Label_batch是形状(64,)的张量,这些标签对应64张图片。

  1. 配置数据集

●shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
●prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
●cache() :将数据集缓存到内存当中,加速运行。

AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

如果报 AttributeError: module ‘tensorflow._api.v2.data’ has no attribute ‘AUTOTUNE’ 错误,就将 AUTOTUNE = tf.data.AUTOTUNE 更换为 AUTOTUNE = tf.data.experimental.AUTOTUNE,这个错误是由于版本问题引起的。

  1. 可视化数据
plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

代码输出:

在这里插入图片描述

三、构建VGG-16网络

VGG优缺点分析:

● VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

● VGG缺点

1)训练时间过长,调参难度大。
2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

结构说明:

● 13个卷积层(Convolutional Layer),分别用blockX_convX表示。
● 3个全连接层(Fully connected Layer),分别用fcX与predictions表示。
● 5个池化层(Pool layer),分别用blockX_pool表示。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16。

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()

代码输出:

Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 fc1 (Dense)                 (None, 4096)              102764544 
                                                                 
 fc2 (Dense)                 (None, 4096)              16781312  
                                                                 
 predictions (Dense)         (None, 2)                 8194      
                                                                 
=================================================================
Total params: 134,268,738
Trainable params: 134,268,738
Non-trainable params: 0
_________________________________________________________________

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

● 损失函数(loss):用于衡量模型在训练期间的准确率。
●优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
●评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

五、训练模型

from tqdm import tqdm
import tensorflow.keras.backend as K

epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)
        
        train_loss     = []
        train_accuracy = []
        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
             # 这里生成的是每一个batch的acc与loss
            history = model.train_on_batch(image,label)
            
            train_loss.append(history[0])
            train_accuracy.append(history[1])
            
            pbar.set_postfix({"train_loss": "%.4f"%history[0],
                              "train_acc":"%.4f"%history[1],
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
            
        history_train_loss.append(np.mean(train_loss))
        history_train_accuracy.append(np.mean(train_accuracy))
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        val_loss     = []
        val_accuracy = []
        for image,label in val_ds:      
            # 这里生成的是每一个batch的acc与loss
            history = model.test_on_batch(image,label)
            
            val_loss.append(history[0])
            val_accuracy.append(history[1])
            
            pbar.set_postfix({"val_loss": "%.4f"%history[0],
                              "val_acc":"%.4f"%history[1]})
            pbar.update(1)
        history_val_loss.append(np.mean(val_loss))
        history_val_accuracy.append(np.mean(val_accuracy))
            
    print('结束验证!')
    print("验证loss为:%.4f"%np.mean(val_loss))
    print("验证准确率为:%.4f"%np.mean(val_accuracy))

代码输出:

Epoch 1/10:   0%|                                                            | 0/43 [00:00<?, ?it/s]2024-09-14 22:13:42.240987: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8101
2024-09-14 22:13:44.707323: I tensorflow/stream_executor/cuda/cuda_blas.cc:1786] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
Epoch 1/10: 100%|███| 43/43 [00:17<00:00,  2.39it/s, train_loss=0.5795, train_acc=0.6406, lr=9.2e-5]


开始验证!


Epoch 1/10: 100%|██████████████████| 11/11 [00:02<00:00,  4.97it/s, val_loss=0.5832, val_acc=0.7000]


结束验证!
验证loss为:0.4907
验证准确率为:0.7625


Epoch 2/10: 100%|██| 43/43 [00:10<00:00,  4.15it/s, train_loss=0.2383, train_acc=0.9375, lr=8.46e-5]


开始验证!


Epoch 2/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.15it/s, val_loss=0.2078, val_acc=0.9000]


结束验证!
验证loss为:0.2292
验证准确率为:0.9071


Epoch 3/10: 100%|██| 43/43 [00:10<00:00,  4.14it/s, train_loss=0.2247, train_acc=0.8906, lr=7.79e-5]


开始验证!


Epoch 3/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.16it/s, val_loss=0.1161, val_acc=0.9500]


结束验证!
验证loss为:0.1303
验证准确率为:0.9486


Epoch 4/10: 100%|██| 43/43 [00:10<00:00,  4.13it/s, train_loss=0.1059, train_acc=0.9375, lr=7.16e-5]


开始验证!


Epoch 4/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.03it/s, val_loss=0.0872, val_acc=0.9750]


结束验证!
验证loss为:0.1862
验证准确率为:0.9281


Epoch 5/10: 100%|██| 43/43 [00:10<00:00,  4.13it/s, train_loss=0.0143, train_acc=1.0000, lr=6.59e-5]


开始验证!


Epoch 5/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.22it/s, val_loss=0.0711, val_acc=0.9750]


结束验证!
验证loss为:0.0683
验证准确率为:0.9736


Epoch 6/10: 100%|██| 43/43 [00:10<00:00,  4.12it/s, train_loss=0.0083, train_acc=1.0000, lr=6.06e-5]


开始验证!


Epoch 6/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.05it/s, val_loss=0.1431, val_acc=0.9500]


结束验证!
验证loss为:0.0884
验证准确率为:0.9756


Epoch 7/10: 100%|██| 43/43 [00:10<00:00,  4.11it/s, train_loss=0.0039, train_acc=1.0000, lr=5.58e-5]


开始验证!


Epoch 7/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.16it/s, val_loss=0.0679, val_acc=0.9750]


结束验证!
验证loss为:0.0669
验证准确率为:0.9778


Epoch 8/10: 100%|██| 43/43 [00:10<00:00,  4.11it/s, train_loss=0.0080, train_acc=1.0000, lr=5.13e-5]


开始验证!


Epoch 8/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.15it/s, val_loss=0.0753, val_acc=0.9500]


结束验证!
验证loss为:0.0581
验证准确率为:0.9756


Epoch 9/10: 100%|██| 43/43 [00:10<00:00,  4.11it/s, train_loss=0.0139, train_acc=1.0000, lr=4.72e-5]


开始验证!


Epoch 9/10: 100%|██████████████████| 11/11 [00:01<00:00, 10.16it/s, val_loss=0.0333, val_acc=0.9750]


结束验证!
验证loss为:0.0782
验证准确率为:0.9764


Epoch 10/10: 100%|█| 43/43 [00:11<00:00,  3.73it/s, train_loss=0.0034, train_acc=1.0000, lr=4.34e-5]


开始验证!


Epoch 10/10: 100%|█████████████████| 11/11 [00:01<00:00,  9.02it/s, val_loss=0.0106, val_acc=1.0000]

结束验证!
验证loss为:0.0542
验证准确率为:0.9830

六、模型评估

epochs_range = range(epochs)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

代码输出:

在这里插入图片描述

七、预测

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy())
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")

代码输出:

1/1 [==============================] - 0s 366ms/step
1/1 [==============================] - 0s 20ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 20ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 19ms/step

在这里插入图片描述

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐