KBQA 常用的问答数据集之 ComplexQuestions
KBQA 常用数据集之ComplexQuestions论文相关数据集概述模型性能比较
目录
1. 论文相关
ComplexQuestions [Bao et al., 2016]
源自论文:Constraint-Based Question Answering with Knowledge Graph
数据集:https://github.com/JunweiBao/MulCQA/tree/ComplexQuestions
2. 数据集概述
2.1 内容介绍
基于Freebase,执行一些操作来选择合适的多约束问题(Multi-Constraint Questions),供human annotator 进行标注。
Multi-Constraint Questions被定义为一个需要多个KB关系或特殊操作才能得到答案的问题。基于web查询分析,约束条件分可为以下6类:
(1) Multi-entity constraint
(2) Type constraint
(3) Explicit temporal constraint
(4) Implicit temporal constraint
(5) Ordinal constraint
(6) Aggregation constraint
ComplexQuestions数据集字段:
2.2 数据统计
ComplexQuestions 数据集中有2100个问答对,来源于三个地方:
① 有596个问答对来自WebQuestions 训练集,有326 来自 WebQuestions 测试集。
② 有300个问答对来自 [Yin et al., 2015]。
③ 有878个问答对来自人工标注(参考2.1 提到的标注)。
ComplexQuestions数据集的训练集和测试集的划分情况如下:
total | 2100 |
training set | 1300 |
test set | 800 |
3. 模型性能比较
模型(年份) | F1 | 论文 | 代码链接 |
MulCG(2016) | 40.94 | Constraint-Based Question Answering with Knowledge Graph | |
QUINT(2017) | 49.2 | Automated Template Generation for Question Answering over Knowledge Graphs | |
CompQA(2018) | 42.8 | Knowledge Base Question Answering via Encoding of Complex Query Graphs | |
STF(2018) | 54.3 | A State-transition Framework to Answer Complex Questions over Knowledge Base | |
QGG(2020) | 43.3 | Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases | GitHub - lanyunshi/Multi-hopComplexKBQA |
DAC(2020) | 45.0 | Hierarchical Query Graph Generation for Complex Question Answering over Knowledge Graph | |
AQG(2020) | 43.1 | Formal Query Building with Query Structure Prediction for Complex Question Answering over Knowledge Base | https://github.com/Bahuia/AQGNet |
后续将持续更新,欢迎大家评论和补充~

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。
更多推荐
所有评论(0)