前言

引言:网上关于大模型的文章也很多,但是都不太容易看懂。小枣君今天试着写一篇,争取做到通俗易懂。

废话不多说,我们直入主题。

什么是大模型?

**
**

大模型,英文名叫Large Model,大型模型。早期的时候,也叫Foundation Model,基础模型。

大模型是一个简称。完整的叫法,应该是“人工智能预训练大模型”。预训练,是一项技术,我们后面再解释。

我们现在口头上常说的大模型,实际上特指大模型的其中一类,也是用得最多的一类——语言大模型(Large Language Model,也叫大语言模型,简称LLM)。

除了语言大模型之外,还有视觉大模型、多模态大模型等。现在,包括所有类别在内的大模型合集,被称为广义的大模型。而语言大模型,被称为狭义的大模型。

图片

从本质来说,大模型,是包含超大规模参数(通常在十亿个以上)的神经网络模型。

之前给大家科普人工智能的时候,小编介绍过,神经网络是人工智能领域目前最基础的计算模型。它通过模拟大脑中神经元的连接方式,能够从输入数据中学习并生成有用的输出。

图片

这是一个全连接神经网络(每层神经元与下一层的所有神经元都有连接),包括1个输入层,N个隐藏层,1个输出层。

大名鼎鼎的卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)以及transformer架构,都属于神经网络模型。

"读到此处,你可能已经意识到:AI大模型的迭代速度远超想象,仅凭碎片化知识永远追不上技术浪潮,如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

在这里插入图片描述

目前,业界大部分的大模型,都采用了transformer架构。

刚才提到,大模型包含了超大规模参数。实际上,大模型的“大”,不仅是参数规模大,还包括:架构规模大、训练数据大、算力需求大。

**
**

在这里插入图片描述

以OpenAI公司的GPT-3为例。这个大模型的隐藏层一共有96层,每层的神经元数量达到2048个。

整个架构的规模就很大(我可画不出来),神经元节点数量很多。

大模型的参数数量和神经元节点数有一定的关系。简单来说,神经元节点数越多,参数也就越多。例如,GPT-3的参数数量,大约是1750亿。

大模型的训练数据,也是非常庞大的。

同样以GPT-3为例,采用了45TB的文本数据进行训练。即便是清洗之后,也有570GB。具体来说,包括CC数据集(4千亿词)+WebText2(190亿词)+BookCorpus(670亿词)+维基百科(30亿词),绝对堪称海量。

最后是算力需求。

这个大家应该都听说过,训练大模型,需要大量的GPU算卡资源。而且,每次训练,都需要很长的时间。

在这里插入图片描述

GPU算卡

根据公开的数据显示,训练GPT-3大约需要3640PFLOP·天(PetaFLOP·Days)。如果采用512张英伟达的A100 GPU(单卡算力195 TFLOPS),大约需要1个月的时间。训练过程中,有时候还会出现中断,实际时间会更长。

总而言之,大模型就是一个虚拟的庞然大物,架构复杂、参数庞大、依赖海量数据,且非常烧钱。

相比之下,参数较少(百万级以下)、层数较浅的模型,是小模型。小模型具有轻量级、高效率、易于部署等优点,适用于数据量较小、计算资源有限的垂直领域场景。

大模型是如何训练出来的?

**
**

接下来,我们了解一下大模型的训练过程。

大家都知道,大模型可以通过对海量数据的学习,吸收数据里面的“知识”。然后,再对知识进行运用,例如回答问题、创造内容等。

学习的过程,我们称之为训练。运用的过程,则称之为推理。

在这里插入图片描述

训练,又分为预训练(Pre-trained)和微调(Fine tuning)两个环节。

  • 预训练

在预训练时,我们首先要选择一个大模型框架,例如transformer。然后,通过“投喂”前面说的海量数据,让大模型学习到通用的特征表示。

那么,为什么大模型能够具有这么强大的学习能力?为什么说它的参数越多,学习能力就越强?

我们可以参考MIT(麻省理工)公开课的一张图:

在这里插入图片描述

这张图是深度学习模型中一个神经元的结构图。

神经元的处理过程,其实就是一个函数计算过程。算式中,x是输入,y是输出。预训练,就是通过x和y,求解W。W是算式中的“权重(weights)”。

权重决定了输入特征对模型输出的影响程度。通过反复训练来获得权重,这就是训练的意义。

权重是最主要的参数类别之一。除了权重之外,还有另一个重要的参数类别——偏置(biases)。

在这里插入图片描述

参数有很多种类

权重决定了输入信号对神经元的影响程度,而偏置则可以理解为神经元的“容忍度”,即神经元对输入信号的敏感程度。

简单来说,预训练的过程,就是通过对数据的输入和输出,去反复“推算”最合理的权重和偏置(也就是参数)。训练完成后,这些参数会被保存,以便模型的后续使用或部署。

参数越多,模型通常能够学习到更复杂的模式和特征,从而在各种任务上表现出更强的性能。

我们通常会说大模型具有两个特征能力——涌现能力泛化能力

当模型的训练数据和参数不断扩大,直到达到一定的临界规模后,会表现出一些未能预测的、更复杂的能力和特性。模型能够从原始训练数据中,自动学习并发现新的、更高层次的特征和模式。这种能力,被称为“涌现能力”。

“涌现能力”,可以理解为大模型的脑子突然“开窍”了,不再仅仅是复述知识,而是能够理解知识,并且能够发散思维。

泛化能力,是指大模型通过“投喂”海量数据,可以学习复杂的模式和特征,可以对未见过的数据做出准确的预测。

简单来说,就像董宇辉一样,书读得多了,有些书虽然没读过,他也能瞎掰几句。

*参数规模越来越大,虽然能让大模型变得更强,但是也会带来更庞大的资源消耗,甚至可能增加“过拟合**”*的风险。

过拟合,是指模型对训练数据学习得过于精确,以至于它开始捕捉并反映训练数据中的噪声和细节,而不是数据的总体趋势或规律。说白了,就是大模型变成了“书呆子”,只会死记硬背,不愿意融会贯通。

预训练所使用的数据,我们也需要再说明一下。

预训练使用的数据,是海量的未标注数据(几十TB)。

之所以使用未标注数据,是因为互联网上存在大量的此类数据,很容易获取。而标注数据(基本上靠人肉标注)需要消耗大量的时间和金钱,成本太高。

预训练模型,可以通过无监督学习方法(如自编码器、生成对抗网络、掩码语言建模、对比学习等,大家可以另行了解),从未标注数据中,学习到数据的通用特征和表示。

这些数据,也不是随便网上下载得来的。整个数据需要经过收集、清洗、脱敏和分类等过程。这样可以去除异常数据和错误数据,还能删除隐私数据,让数据更加标准化,有利于后面的训练过程。

获取数据的方式,也是多样化的。

如果是个人和学术研究,可以通过一些官方论坛、开源数据库或者研究机构获取。如果是企业,既可以自行收集和处理,也可以直接通过外部渠道(市场上有专门的数据提供商)购买。

  • 微调

预训练学习之后,我们就得到了一个通用大模型。这种模型一般不能直接拿来用,因为它在完成特定任务时往往表现不佳。

这时,我们需要对模型进行微调。

微调,是给大模型提供特定领域的标注数据集,对预训练的模型参数进行微小的调整,让模型更好的完成特定任务。

在这里插入图片描述

行业数据类别

微调之后的大模型,可以称之为行业大模型。例如,通过基于金融证券数据集的微调,可以得到一个金融证券大模型。

如果再基于更细分的专业领域进行微调,就是专业大模型(也叫垂直大模型)。

我们可以把通用大模型理解为中小学生,行业大模型是大学本科生,专业大模型是研究生。

在这里插入图片描述

微调阶段,由于数据量远小于预训练阶段,所以对算力需求小很多。

大家注意,对于大部分大模型厂商来说,他们一般只做预训练,不做微调。而对于行业客户来说,他们一般只做微调,不做预训练。

“预训练+微调”这种分阶段的大模型训练方式,可以避免重复的投入,节省大量的计算资源,显著提升大模型的训练效率和效果。

预训练和微调都完成之后,需要对这个大模型进行评估。通过采用实际数据或模拟场景对大模型进行评估验证,确认大模型的性能、稳定性和准确性‌等是否符合设计要求。

等评估和验证也完成,大模型基本上算是打造成功了。接下来,我们可以部署这个大模型,将它用于推理任务。

换句话说,这时候的大模型已经“定型”,参数不再变化,可以真正开始干活了。

大模型的推理过程,就是我们使用它的过程。通过提问、提供提示词(Prompt),可以让大模型回答我们的问题,或者按要求进行内容生成。

最后,画一张完整的流程图:

在这里插入图片描述

█ 大模型究竟有什么作用?

根据训练的数据类型和应用方向,我们通常会将大模型分为语言大模型(以文本数据进行训练)、音频大模型(以音频数据进行训练)、视觉大模型(以图像数据进行训练),以及多模态大模型(文本和图像都有)。

语言大模型,擅长自然语言处理(NLP)领域,能够理解、生成和处理人类语言,常用于文本内容创作(生成文章、诗歌、代码)、文献分析、摘要汇总、机器翻译等场景。大家熟悉的ChatGPT,就属于此类模型。

音频大模型,可以识别和生产语音内容,常用于语音助手、语音客服、智能家居语音控制等场景。

视觉大模型,擅长计算机视觉(CV)领域,可以识别、生成甚至修复图像,常用于安防监控、自动驾驶、医学以及天文图像分析等场景。

多模态大模型,结合了NLP和CV的能力,通过整合并处理来自不同模态的信息(文本、图像、音频和视频等),可以处理跨领域的任务,例如文生图,文生视频、跨媒体搜索(通过上传图,搜索和图有关的文字描述)等。

今年以来,多模态大模型的崛起势头非常明显,已经成为行业关注的焦点。

如果按照应用场景进行分类,那么类别就更多了,例如金融大模型、医疗大模型、法律大模型、教育大模型、代码大模型、能源大模型、政务大模型、通信大模型,等等。

例如金融大模型,可以用于风险管理、信用评估、交易监控、市场预测、合同审查、客户服务等。功能和作用很多很多,不再赘述。

█ 大模型的发展趋势?

截至2024年3月25日,中国10亿参数规模以上的大模型数量已经超过100个,号称“百模大战”。

这些大模型的应用领域、参数规模各有不同,但是,背后都是白花花的银子。

根据行业估测的数据,训练一个大模型,成本可能在几百万美元到上亿美元之间。例如,GPT-3训练一次的成本,约为140万美元。Claude 3模型的训练费用,高达约1亿美元。

如此多的企业推出大模型,实际上也是一种资源的浪费。

而且,大模型也分为开源大模型和闭源大模型。行业里有能力做闭源大模型的企业,并不是很多。大部分的大模型,都是基于开源大模型框架和技术打造的,实际上是为了迎合资本市场的需求,或者为了蹭热度。

行业里,目前仍有部分头部企业在死磕参数规模更大的超大模型(拥有数万亿到数千万亿个参数),例如OpenAI、xAI等。马斯克之前就在X平台宣布,xAI团队已经成功启动了世界上最强大的AI训练集群。该集群由10万块H100组成,主要用于Grok 2和Grok 3的训练和开发。

对于大部分企业来说,万卡和万亿参数其实已经是个天花板了,再往上走的意愿不强烈,钱包也不允许。

随着行业逐渐趋于理性,现在大家的关注焦点,逐渐从“打造大模型”,变成“使用大模型”。如何将大模型投入具体应用,如何吸引更多用户,如何通过大模型创造收入,成为各大厂商的头等任务。

大模型落地,就涉及到能力“入”端(下沉到终端)。所以,AI手机、AI PC、具身智能的概念越来越火,成为新的发展热点。

以AI手机为例,像高通、联发科等芯片厂商,都推出了具有更强AI算力的手机芯片。而OPPO、vivo等手机厂商,也在手机里内置了大模型,并推出了很多原生AI应用。

第三方AI应用的数量,就更不用说了。截止目前,根据行业数据显示,具有AI功能的APP数量已达到300多万款。2024年6月,AIGC类APP的月活跃用户规模达6170万,同比增长653%。

大模型入端,也带来了轻量化的趋势。为了在资源受限的设备上运行,大模型将通过剪枝、量化、蒸馏等技术进行轻量化,保持性能的同时减少计算资源需求。

大模型会带来哪些挑战?

大模型是一个好东西,能够帮我们做很多事情,节约时间,提升效率。但是,大模型也是一把双刃剑,会带来一些新的挑战。

首先,是影响失业率。大模型所掀起的AI人工智能浪潮,肯定会导致一些人类工作岗位被替代,进而导致失业率上升。

其次,是版权问题。大模型基于已有数据进行学习。大模型生成的内容,尤其是用于文本、图像、音乐和视频创作,可能引发版权和知识产权问题。它虽然帮助了创作,但也“引用”了人类创作者的作品,界限难以区分。长此以往,可能打击人类的原生创作热情。

第三,大模型可能引发算法偏见和不公平。也就是说,训练数据中存在的偏差,会导致大模型学习到这些偏差,从而在预测和生成内容时表现出不公平的行为。模型可能无意中强化社会上的刻板印象和偏见,例如性别、种族和宗教等方面的偏见。大模型生成的内容也可能被用于政治宣传和操纵,影响选举和公共舆论。

第四,被用于犯罪。大模型可以生成逼真的文本、图像、语音和视频,这些内容可能被用于诈骗、诽谤、虚假信息传播等恶意用途。

第五,能耗问题。大模型的训练和推理需要大量的计算资源,这不仅增加了成本,还带来了巨大的碳排放。很多企业为了服务于资本市场或跟风,盲目进行大模型训练,消耗了大量的资源,也导致了无意义的碳排放。

总而言之,大模型在伦理、法律、社会和经济层面带来的威胁和挑战还是很多的,需要更多时间进行探索和解决。

好啦,以上就是今天文章的全部内容,希望对大家有所帮助!

对于人工智能这个领域,小枣君也是学习阶段。文章如果有错漏的地方,还请大家多多指正!谢谢!

好啦,以上就是本期**「大模型高能玩法」的全部内容!想获取更多大模型的独家深度资料?🔥 快关注 我**,一键解锁前沿技术解析、实战案例和进阶秘籍📚!

从零入门大模型:最全学习路线、实战案例与资源汇总(2025最新版)

人工智能大模型(如ChatGPT、DeepSeek等)正驱动着技术变革,掌握相关技术已成为提升竞争力的关键。然而,大模型技术涉及领域广泛,学习曲线陡峭。为了帮助大家系统性地学习和掌握大模型技术,我们整理了一份资源包,旨在提供从理论基础到实践应用的全面支持。

这份资源包包含以下内容:

大模型学习路线与阶段规划: 提供清晰的学习路径,帮助学习者了解不同阶段的学习目标和所需技能。

人工智能论文PDF合集: 收录了重要的大模型相关论文,涵盖Transformer架构、预训练模型、微调技术等关键领域,方便深入研究。

52个大模型落地案例合集: 汇集了不同行业的大模型应用案例,展示了如何将大模型技术应用于实际问题,并提供参考实现思路。

100+本数据科学必读经典书: 涵盖机器学习、深度学习、自然语言处理等领域的基础理论和算法,为理解大模型技术奠定基础。

600+套大模型行业研究报告: 提供市场分析、技术趋势、竞争格局等信息,帮助了解大模型技术的行业应用和发展前景。

这份资源包对于想要系统学习大模型技术的人来说,无疑是一份极具价值的指南。首先,要充分利用其中的“大模型学习路线与阶段规划”,这相当于你的学习地图,这份指南出自于我们体系教程《NLP大模型人才培养计划》。

务必仔细研读,了解每个阶段的目标、所需技能和学习内容,并根据自身情况进行调整,制定个性化的学习计划。可以将大的学习路线分解为更小的、可实现的目标,并设定完成时间,这有助于保持学习动力和跟踪进度。

添加👇方联系方式领取【保证100%免费

在这里插入图片描述

咨询大模型人才培养计划 &免费领取本文资源

大模型学习路线与阶段规划

本路线旨在帮助学员掌握大模型相关技术栈,以及大模型在行业场景中的应用,包含企业级大模型项目实战。

各阶段详细学习内容:

阶段一:自然语言处理(NLP)与AI基础

  • 目标: 掌握NLP与深度学习AI的基础知识,为后续大模型学习打下坚实基础。

  • 学习内容:

    • 自注意力机制(self-attention)
    • 如何让模型学习到文本中不同语段的上下文联系?
    • 巧用位置编码,传递语句前后顺序关系
    • 核心计算流程:编码(Encoder)和解码(Decoder)
    • 实践任务一: 使用Pytorch手撸Transformer
    • 实践任务二: 全能的Transformer,解决时序预测问题
    • 循环神经网络结构拆解
    • 如何解决长序列的知识遗忘问题?—长短期记忆神经网络
    • 基于PyTorch实现RNN代码架构
    • 如何赋予模型双向学习能力?
    • 在不同任务中的RNN的用法区别:分类、序列标注等
    • 实践任务: 基于RNN的分词任务实战
    • 卷积神经网络结构拆解
    • 基于PyTorch实现CNN代码架构
    • 卷积网络中的经典层(Layer)及其实现方法
    • 卷积网络中的经典模块(Module)及其实现方法
    • 使用卷积网络建模的经典模型介绍
    • 实践任务: 使用CNN搭建文本分类模型
    • 实践任务二: 深度学习开发环境搭建
    • 实践任务一: 从0实现逻辑回归模型
    • 人工智能的发展路径
    • 机器学习优化方法和应用
    • 深度学习的发展和应用范式的演变
    • 卷积神经网络(CNN)
    • 循环神经网络(RNN)
    • Transformer架构

阶段二:自然语言处理实战

  • 目标: 结合实际场景,掌握NLP技术栈中的任务分类及相关技术。

  • 学习内容:

    • BERT的模型结构解析
    • BERT预训练方法
    • Mask掩码机制:让模型自己做「完形填空」
    • 长段落上下文信息增强,预测下一句(NSP训练策略)
    • 数据准备: 准备训练数据、基础文本预处理
    • 最简单的编码方法:One-Hot
    • 词袋表示(N-Grams词袋)
    • 基于词频统计的表示方法(TF-IDF)
    • 词嵌入(Word2vec、Glove、FastText)
    • 可视化词向量
    • 实践任务: 手写Word2vec
    • 问题定义
    • 数据获取方法
    • 数据探索(EDA)&数据整理(Wrangling)&预处理(Initial Preprocessing)
    • 如何将数据转化成机器可识别的语言?— 特征工程
    • 算法的高级艺术:抽象方法和建模策略
    • 如何衡量算法模型的好坏?—评估方法及其重要性
    • 将自然语言处理算法部署成应用能力
    • 实践任务: 数据分析和预处理实战
    • 第一个自然语言处理流程
    • 文本表示方法
    • 预训练模型 - BERT

阶段三:多模态大模型与知识图谱自动化构建

  • 目标: 掌握多模态大模型架构,以及如何利用大模型自动化构建知识图谱。

  • 学习内容:

    • 知识图谱Schema建设方案
    • 基于大模型的实体识别和关系构建方法
    • 基于大模型的输入存储和图谱查询方法
    • 自动化迭代策略
    • 实践内容:
    • 学习如何使用大模型根据行业数据特点帮助简历并完善知识图谱schema
    • 学习如何在Prompt中通过ICL增强大模型对任务的理解
    • 学习如何通过微调大模型,优化实体识别和关系关系构建效果
    • 学习如何让大模型理解知识图谱的总体架构,从而让大模型能够根据用户输入去自动生成数据存储和查询知识图谱的指令
    • 如何驱动大模型周期性得评估知识图谱结构的优劣,自动生成优化方案
    • 学习如何构建指令模板
    • 学习如何微调训练多模态大模型
    • 搭建图像要素自动识别和多模态问答demo系统
    • 多模态大模型
    • 基于大模型的知识图谱自动化构建项目实战

阶段四:企业级大模型应用落地方案 - RAG实战

  • 目标: 从0-1搭建通用性RAG应用框架,并应用于多个行业场景。

  • 学习内容:

    • 企业级应用框架设计与实现
    • 三个标准流程的抽象与搭建方法(RAG.Chain)
    • 灵活的功能组件实现策略(RAG.Module)
    • 自定义文档加载器:PDF图文信息增强识别
    • 自定义开发文档分割组件:中文段落切分优化方案
    • 依赖服务的接入方法:向量数据库、大模型推理服务、embedding、重排序模型
    • RAG评估流程搭建
    • 基于LangSmith和langfuse搭建RAG流程监控系统
    • RAG场景化进阶:基于知识图谱的增强策略(接入现有图谱数据、GraphRAG)
    • RAG任务介绍 & 技术发展历程
    • RAG依赖哪些组件和能力?(向量数据库、大模型推理服务)
    • 模块化RAG系统架构设计 — 从理论到实战
    • 主流的(开源)RAG应用开发框架
    • RAG生态工具和能力
    • 实践内容:

阶段五:Agent项目实战

  • 目标: 掌握Agent技术,应对系统状态变化不可控的复杂场景。

  • 学习内容:

    • 学习如何通过Prompt引导Agent进行推理
    • 学习Agent推理和验证流程的实现方法
    • 学习如何让Agent在合适任务上调用外部能力来增强效果
    • 学习如何搭建多Agent系统
    • 学习如何解决多跳问题:ReAct的实现方法
    • 「人人都是AI开发专家」实践一:基于ModelScope Agent搭建一个应用开发助手
    • 「人人都是AI开发专家」实践二:基于Coze搭建一个知识问答机器人
    • Agent通用架构介绍
    • Agent中的规划(Planning)和推理(Reasoning)能力
    • Agent的文本输出和工具调用
    • 经典AI Agent案例分析
    • ModelScope-Agent项目拆解
    • 实践内容:

阶段六:大模型应用算法工程师面试辅导

  • 目标: 提升面试技巧,成功斩获大模型应用算法工程师职位。

  • 学习内容:

    • 在企业中的发展路径
    • 职业规划:如何快速升职加薪
    • 技术层面如何持续性的自我提升
    • 优秀简历模板讲解
    • 典型简历抽样点评
    • 大模型面试知识点整理和分享(八股文)
    • 一线互联网大厂的面试流程及侧重点
    • 面试技巧分享
    • 面试时的几大忌讳
    • 面试攻略及指导
    • 大模型应用算法工程师的职业规划

人工智能论文PDF合集

切忌贪多嚼不烂。建议从综述性论文入手,了解特定领域的整体情况和关键研究方向。同时,关注奠定大模型基础的经典论文,例如 Transformer 架构的论文。阅读时,精读与泛读结合,对于重要的论文仔细阅读并理解细节,对于其他论文则快速浏览以了解主要思想。务必做好笔记,记录论文的关键信息、创新点和实验结果,方便以后回顾。

52个大模型落地案例合集

52个大模型落地案例合集”是理论联系实际的绝佳素材。通过案例分析,了解大模型是如何应用于实际问题的,并思考这些案例是否可以应用于你感兴趣的领域。学习案例中的成功经验和遇到的挑战,并尝试复现一些简单的案例,加深理解。

100+本数据科学必读经典书

“100+本数据科学必读经典书”是夯实基础的基石。将书籍按照主题进行分类,例如机器学习、深度学习、自然语言处理、统计学、编程等,并根据自身背景和学习目标,选择合适的书籍。

从入门书籍开始,逐步深入。阅读时,参考其他读者的评论和推荐,选择高质量的书籍,并避免贪多嚼不烂,一次只读几本书,确保理解并掌握内容。

600+套大模型行研报告

“600+套大模型行研报告”是了解行业趋势的重要窗口。通过阅读行研报告,了解大模型技术的最新发展趋

部分资源内容展示

图片

图片

图片

图片

在这里插入图片描述

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!在这里插入图片描述

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐