deepseek.com:逻辑回归的目标函数,损失函数,梯度下降 标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示, 模型应用场景和优缺点,及如何改进解决及改进方法数据推导。

逻辑回归全面解析

一、数学推导

模型定义
逻辑回归模型为概率预测模型,输出P(y=1∣x)=σ(w⊤x+b)P(y=1 \mid \mathbf{x}) = \sigma(\mathbf{w}^\top \mathbf{x} + b)P(y=1x)=σ(wx+b),其中σ(z)=11+e−z\sigma(z) = \frac{1}{1+e^{-z}}σ(z)=1+ez1


1. 目标函数与损失函数

  • 损失函数(交叉熵)
    单个样本的损失:
    L(y,y^)=−ylog⁡(y^)−(1−y)log⁡(1−y^) \mathcal{L}(y, \hat{y}) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y}) L(y,y^)=ylog(y^)(1y)log(1y^)
    其中y^=σ(w⊤x+b)\hat{y} = \sigma(\mathbf{w}^\top \mathbf{x} + b)y^=σ(wx+b)

    所有样本的平均损失(标量形式):
    J(w,b)=−1N∑i=1N[yilog⁡(y^i)+(1−yi)log⁡(1−y^i)] J(\mathbf{w}, b) = -\frac{1}{N} \sum_{i=1}^N \left[ y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \right] J(w,b)=N1i=1N[yilog(y^i)+(1yi)log(1y^i)]

    矩阵形式(X\mathbf{X}X为设计矩阵,y\mathbf{y}y为标签向量):
    J(w,b)=−1N[y⊤log⁡(σ(Xw+b))+(1−y)⊤log⁡(1−σ(Xw+b))] J(\mathbf{w}, b) = -\frac{1}{N} \left[ \mathbf{y}^\top \log(\sigma(\mathbf{X}\mathbf{w} + b)) + (1-\mathbf{y})^\top \log(1-\sigma(\mathbf{X}\mathbf{w} + b)) \right] J(w,b)=N1[ylog(σ(Xw+b))+(1y)log(1σ(Xw+b))]


2. 梯度下降推导

  • 标量形式梯度
    wjw_jwj求偏导:
    ∂L∂wj=(y^−y)xj \frac{\partial \mathcal{L}}{\partial w_j} = (\hat{y} - y) x_j wjL=(y^y)xj
    bbb求偏导:
    ∂L∂b=y^−y \frac{\partial \mathcal{L}}{\partial b} = \hat{y} - y bL=y^y

  • 矩阵形式梯度
    梯度矩阵为:
    ∇wJ=1NX⊤(σ(Xw+b)−y) \nabla_{\mathbf{w}} J = \frac{1}{N} \mathbf{X}^\top (\sigma(\mathbf{X}\mathbf{w} + b) - \mathbf{y}) wJ=N1X(σ(Xw+b)y)
    ∂J∂b=1N∑i=1N(y^i−yi) \frac{\partial J}{\partial b} = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i - y_i) bJ=N1i=1N(y^iyi)


损失函数的设计是机器学习模型的核心环节,它决定了模型如何衡量预测值与真实值的差异,并指导参数优化方向。逻辑回归的损失函数(交叉熵)设计并非偶然,而是基于概率建模、数学优化和信息论的深刻原理。以下从多个角度详细解释其设计逻辑:


一、损失函数的设计逻辑

1. 概率建模的视角

逻辑回归的目标是预测样本属于某一类的概率(二分类)。

  • 假设数据服从伯努利分布
    对单个样本,标签y∈{0,1}y \in \{0,1\}y{0,1},模型预测的概率为:
    {P(y=1∣x)=y^=σ(w⊤x+b),P(y=0∣x)=1−y^. \begin{cases} P(y=1 \mid \mathbf{x}) = \hat{y} = \sigma(\mathbf{w}^\top \mathbf{x} + b), \\ P(y=0 \mid \mathbf{x}) = 1 - \hat{y}. \end{cases} {P(y=1x)=y^=σ(wx+b),P(y=0x)=1y^.
    样本的联合似然函数为:
    L(w,b)=∏i=1Ny^iyi(1−y^i)1−yi. L(\mathbf{w}, b) = \prod_{i=1}^N \hat{y}_i^{y_i} (1 - \hat{y}_i)^{1 - y_i}. L(w,b)=i=1Ny^iyi(1y^i)1yi.

  • 最大化对数似然
    为了便于优化,对似然函数取负对数(将乘法转为加法,凸函数性质不变):
    −log⁡L(w,b)=−∑i=1N[yilog⁡y^i+(1−yi)log⁡(1−y^i)]. -\log L(\mathbf{w}, b) = -\sum_{i=1}^N \left[ y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i) \right]. logL(w,b)=i=1N[yilogy^i+(1yi)log(1y^i)].
    最小化该式等价于最大化似然函数,此即 交叉熵损失

2. 信息论视角

交叉熵(Cross-Entropy)衡量两个概率分布PPP(真实分布)和QQQ(预测分布)的差异:
H(P,Q)=−EP[log⁡Q]. H(P, Q) = -\mathbb{E}_{P}[\log Q]. H(P,Q)=EP[logQ].
对于二分类问题:

  • 真实分布PPP:标签yyy是确定的(0或1),可视为一个 Dirac delta分布
  • 预测分布QQQ:模型输出的概率y^\hat{y}y^
    交叉熵的表达式与负对数似然一致,因此最小化交叉熵等价于让预测分布逼近真实分布。
3. 优化视角:梯度性质
  • 交叉熵 vs 均方误差(MSE)
    若使用 MSE 损失L=12(y−y^)2\mathcal{L} = \frac{1}{2}(y - \hat{y})^2L=21(yy^)2,其梯度为:
    ∂L∂wj=(y−y^)⋅y^(1−y^)⋅xj. \frac{\partial \mathcal{L}}{\partial w_j} = (y - \hat{y}) \cdot \hat{y} (1 - \hat{y}) \cdot x_j. wjL=(yy^)y^(1y^)xj.
    y^\hat{y}y^接近 0 或 1 时(预测置信度高),梯度中的y^(1−y^)\hat{y}(1 - \hat{y})y^(1y^)趋近于 0,导致 梯度消失,参数更新缓慢。

    交叉熵的梯度为:
    ∂L∂wj=(y^−y)xj. \frac{\partial \mathcal{L}}{\partial w_j} = (\hat{y} - y) x_j. wjL=(y^y)xj.
    梯度直接正比于误差(y^−y)(\hat{y} - y)(y^y),无论预测值大小,梯度始终有效,优化更高效。

4. 数学性质
  • 凸性:交叉熵损失函数在逻辑回归中是凸函数(Hessian矩阵半正定),保证梯度下降能找到全局最优解。
  • 概率校准性:交叉熵强制模型输出具有概率意义(需配合 sigmoid 函数),而 MSE 无此特性。

二、为什么不是其他损失函数?

1. 均方误差(MSE)的缺陷
  • 梯度消失问题(如上述)。
  • 对概率的惩罚不对称:
    y=1y=1y=1时,预测y^=0.9\hat{y}=0.9y^=0.9的 MSE 损失为0.010.010.01,而交叉熵损失为−log⁡(0.9)≈0.105-\log(0.9) \approx 0.105log(0.9)0.105
    交叉熵对错误预测(如y^=0.1\hat{y}=0.1y^=0.1y=1y=1y=1)的惩罚更严厉(−log⁡(0.1)≈2.3-\log(0.1) \approx 2.3log(0.1)2.3),符合分类任务需求。
2. 其他替代损失函数
  • Hinge Loss(SVM使用)
    适用于间隔最大化,但对概率建模不直接,且优化目标不同。
  • Focal Loss
    改进交叉熵,解决类别不平衡问题,但需额外调整超参数。

三、交叉熵的数学推导

1. 从伯努利分布到交叉熵

假设样本独立,标签y∼Bernoulli(y^)y \sim \text{Bernoulli}(\hat{y})yBernoulli(y^),其概率质量函数为:
P(y∣y^)=y^y(1−y^)1−y. P(y \mid \hat{y}) = \hat{y}^y (1 - \hat{y})^{1 - y}. P(yy^)=y^y(1y^)1y.
对数似然函数为:
log⁡P(y∣y^)=ylog⁡y^+(1−y)log⁡(1−y^). \log P(y \mid \hat{y}) = y \log \hat{y} + (1 - y) \log (1 - \hat{y}). logP(yy^)=ylogy^+(1y)log(1y^).
最大化对数似然等价于最小化其负数,即交叉熵损失。

2. 梯度推导(矩阵形式)

设设计矩阵X∈RN×D\mathbf{X} \in \mathbb{R}^{N \times D}XRN×D,权重w∈RD\mathbf{w} \in \mathbb{R}^DwRD,偏置b∈Rb \in \mathbb{R}bR,预测值y^=σ(Xw+b)\hat{\mathbf{y}} = \sigma(\mathbf{X}\mathbf{w} + b)y^=σ(Xw+b)
交叉熵损失:
J(w,b)=−1N[y⊤log⁡y^+(1−y)⊤log⁡(1−y^)]. J(\mathbf{w}, b) = -\frac{1}{N} \left[ \mathbf{y}^\top \log \hat{\mathbf{y}} + (1 - \mathbf{y})^\top \log (1 - \hat{\mathbf{y}}) \right]. J(w,b)=N1[ylogy^+(1y)log(1y^)].
梯度计算:
∂J∂w=1NX⊤(y^−y), \frac{\partial J}{\partial \mathbf{w}} = \frac{1}{N} \mathbf{X}^\top (\hat{\mathbf{y}} - \mathbf{y}), wJ=N1X(y^y),
∂J∂b=1N∑i=1N(y^i−yi). \frac{\partial J}{\partial b} = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i - y_i). bJ=N1i=1N(y^iyi).


四、实际应用中的设计原则

  1. 任务需求匹配:分类任务需概率输出,回归任务用 MSE。
  2. 优化效率:梯度应稳定且易于计算。
  3. 概率解释性:损失函数需与概率模型一致(如交叉熵配 sigmoid)。
  4. 鲁棒性:对异常值的敏感程度(交叉熵比 MSE 更敏感,需数据清洗)。

五、总结

逻辑回归的交叉熵损失函数是通过以下步骤设计的:

  1. 概率假设:假设数据服从伯努利分布。
  2. 最大似然估计:将参数估计问题转化为优化问题。
  3. 数学简化:取负对数似然,得到交叉熵形式。
  4. 优化验证:选择梯度性质更优的损失函数。

这种设计使得逻辑回归在二分类任务中高效、稳定,且输出具有概率意义,成为基础且强大的模型。

二、PyTorch 代码案例
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification

# 生成数据
X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0, n_clusters_per_class=1)
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.float32).view(-1, 1)

# 定义模型
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super().__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        return torch.sigmoid(self.linear(x))

model = LogisticRegression(2)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

# 训练
losses = []
for epoch in range(100):
    y_pred = model(X)
    loss = criterion(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
    losses.append(loss.item())

# 可视化损失曲线
plt.plot(losses)
plt.title("Training Loss")
plt.show()

# 决策边界可视化
w = model.linear.weight.detach().numpy()[0]
b = model.linear.bias.detach().numpy()

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100))
Z = model(torch.tensor(np.c_[xx.ravel(), yy.ravel()], dtype=torch.float32)).detach().numpy()
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y.squeeze(), edgecolors='k')
plt.title("Decision Boundary")
plt.show()

三、可视化展示
  • 数据分布:二维散点图展示类别分离情况。
  • 损失曲线:训练过程中损失值下降曲线。
  • 决策边界:等高线图显示模型预测分界线。

四、应用场景与优缺点
  • 应用场景
    信用评分、垃圾邮件检测、疾病预测(线性可分问题)。

  • 优点

    1. 计算高效,适合大规模数据。
    2. 输出概率解释性强。
  • 缺点

    1. 无法直接处理非线性关系。
    2. 对多重共线性敏感。

五、改进方法与数学推导
  1. 正则化

    • L2正则化:目标函数变为
      Jreg=J(w,b)+λ2∥w∥2 J_{\text{reg}} = J(\mathbf{w}, b) + \frac{\lambda}{2} \|\mathbf{w}\|^2 Jreg=J(w,b)+2λw2
      梯度更新:
      w←w−η(∇wJ+λw) \mathbf{w} \leftarrow \mathbf{w} - \eta \left( \nabla_{\mathbf{w}} J + \lambda \mathbf{w} \right) wwη(wJ+λw)
  2. 特征工程
    添加多项式特征x12,x22,x1x2x_1^2, x_2^2, x_1x_2x12,x22,x1x2等,将数据映射到高维空间。

  3. 核方法
    通过核技巧隐式映射到高维空间(需结合其他模型如SVM)。


六、总结

逻辑回归通过概率建模解决二分类问题,代码简洁高效,但需注意其线性假设的限制。通过正则化、特征工程等手段可显著提升模型性能。

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐