python三大开发框架django、 flask 和 fastapi 对比_python,django,flask(1)
并且由于它基于相同的Python类型提示,因此对编辑器的支持非常棒。一个由 API 系统所需的主要功能是数据的序列化,就是把数据从编程语言中的对象转称成可以在网络上传输的对象,比如数据库中的数据转换为 JSON 对象。有几个 Flask REST frameworks ,但经过调查和试用,我发现,不少项目都停产或放弃,还存在有一些长期的问题,使得它们并不适合解决前面的问题。另外一个功能就是数据的验
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注软件测试)
正文
Requests
FastAPI 实际上不是 Requests 的替代工具。它们的适用范围非常不同。实际上,在FastAPI 应用程序内部使用 Requests 是很常见的。
但是,FastAPI 从 Requests 中获得了很多启发。Requests 是一个与API(作为客户端)进行交互的库,而 FastAPI 是一个用于构建 API(作为服务器)的库。它们或多或少地处于相反的末端,彼此互补。Requests 具有非常简单直观的设计,非常易于使用,并具有合理的默认值。但同时,它非常强大且可自定义。
这就是为什么,如官方网站所述:
Requests 是有史以来下载次数最多的Python软件包之一
您的使用方式非常简单。例如,要发出GET请求,您可以编写:
response = requests.get(“http://example.com/some/url”)
FastAPI 对应的 API 路径操作如下所示:
@app.get("/some/url")
def read_url():
return {"message": "Hello World"}
它们使用起来的相似之处如 requests.get(…)
和 @app.get(…)
。
启发 FastAPI 地方:
拥有简单直观的API。
-
直接,直观地使用HTTP方法名称(操作)。
-
具有合理的默认值,功能强大的自定义。
Swagger / OpenAPI
我想要 Django REST Framework 的主要功能是自动 API 文档。然后我发现 API 文档有一个标准叫 Swagger ,它使用 JSON 或 YAML 来描述。
并且 Swagger API 的 Web 用户界面已经被人创建出来了。因此,能够为 API 生成Swagger 文档将允许自动使用此 Web 用户界面。
在某个时候,Swagger 被授予 Linux Foundation,将其重命名为 OpenAPI。这就是为什么在谈论版本 2.0 时通常会说“ Swagger”,对于版本3+来说是“ OpenAPI”。
启发 FastAPI 地方:
为API规范采用开放标准,而不是使用自定义架构。并集成基于标准的用户界面工具:
Swagger UI
ReDoc
选择这两个是因为它们相当受欢迎且稳定,但是通过快速搜索,您可以找到数十个 OpenAPI 的其他替代用户界面(可以与FastAPI一起使用)。
Flask REST frameworks
有几个 Flask REST frameworks ,但经过调查和试用,我发现,不少项目都停产或放弃,还存在有一些长期的问题,使得它们并不适合解决前面的问题。
Marshmallow
一个由 API 系统所需的主要功能是数据的序列化,就是把数据从编程语言中的对象转称成可以在网络上传输的对象,比如数据库中的数据转换为 JSON 对象。将 Python 中的datetime 对象转为字符串,等等。
另外一个功能就是数据的验证,确保传入的参数是有效的,例如,有些字段是一个 int,类型而不是字符串,这在检测输入数据是非常有用的。
如果没有数据验证,你就必须用手工写代码来完成所有的检查。
这两点功能就是 Marshmallow 所提供的,这些是一个伟大的图书馆,之前我经常使用它。
Marshmallow 产生之前 Python 还没有加入类型提示。因此,定义一个 schema 你需要引入 Marshmallow 特定的 utils 的和类。
启发 FastAPI 地方:
使用代码来定义提供的数据类型和验证的 schema,验证都是自动化的。
FastAPI 使用的框架
Pydantic
Pydantic 是一个库,基于Python类型提示来定义数据验证,序列化和文档(使用JSON模式)。这使其非常直观。它可与 Marshmallow 媲美。尽管在基准测试中它比Marshmallow 更快。并且由于它基于相同的Python类型提示,因此对编辑器的支持非常棒。
FastAPI 使用它来处理所有数据验证,数据序列化和自动模型文档(基于JSON Schema)。
然后,FastAPI 会获取该 JSON Schema 数据并将其放入OpenAPI 中,除此之外它还会执行其他所有操作。
Starlette
Starlette 是一种轻量级的 ASGI 框架/工具包,是构建高性能 asyncio 服务的理想选择。
它非常简单直观。它的设计易于扩展,并具有模块化组件。
它具有:
- 令人印象深刻的性能。
- WebSocket支持。
- GraphQL支持。
- 处理中的后台任务。
- 启动和关闭事件。
- 测试基于 requests 的客户端。
- CORS,GZip,静态文件,流式响应。
- 会话和 Cookie 支持。
- 100% 的测试覆盖率。
- 100% 类型注释的代码库。
- 零硬依赖性。
Starlette 是目前测试最快的 Python 框架。只有 Uvicorn 超越了它,Uvicorn 不是框架,而是服务器。
Starlette 提供了所有基本的 Web 微框架功能。但是它不提供自动数据验证,序列化或API 文档。
这是 FastAPI 在顶部添加的主要内容之一,全部基于Python类型提示(使用Pydantic)。以及依赖注入系统,安全实用程序,OpenAPI 模式生成等。
技术细节:ASGI 是 Django 核心团队成员开发的新“标准”。尽管他们正在这样做,但它仍然不是“ Python标准”(PEP)。但是,它已经被多种工具用作“标准”。这可以大大提高互操作性,因为您可以将 Uvicorn 切换到任何其他 ASGI 服务器(例如 Daphne 或 Hypercorn),也可以添加与ASGI兼容的工具,例如 python-socketio。
FastAPI 使用它来处理所有核心 Web 部件。在顶部添加功能。类 FastAPI 本身直接继承Starlette。因此,使用 Starlette 可以执行的任何操作,都可以直接使用 FastAPI 进行。
Uvicorn
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)**
[外链图片转存中…(img-sTrL9JLg-1713153824714)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。
更多推荐
所有评论(0)