从编写一个最简单的 多层感知机 (Multilayer Perceptron, MLP),或者说 “多层全连接神经网络” 开始,介绍 TensorFlow 的模型编写方式。在这一部分,我们依次进行以下步骤:

  1. 使用 tf.keras.datasets 获得数据集并预处理
  2. 使用 tf.keras.Model 和 tf.keras.layers 构建模型
  3. 构建模型训练流程,使用 tf.keras.losses 计算损失函数,并使用 tf.keras.optimizer 优化模型
  4. 构建模型评估流程,使用 tf.keras.metrics 计算评估指标

使用多层感知机完成 MNIST 手写体数字图片数据集的分类任务。

一、数据获取及预处理: tf.keras.datasets

先进行预备工作,实现一个简单的 MNISTLoader 类来读取 MNIST 数据集数据。这里使用了 tf.keras.datasets 快速载入 MNIST 数据集。

class MNISTLoader():
    def __init__(self):
        mnist = tf.keras.datasets.mnist
        (self.train_data, self.train_label), (self.test_data, self.test_label) = mnist.load_data()
        # MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道
        self.train_data = np.expand_dims(self.train_data.astype(np.float32) / 255.0, axis=-1)      # [60000, 28, 28, 1]
        self.test_data = np.expand_dims(self.test_data.astype(np.float32) / 255.0, axis=-1)        # [10000, 28, 28, 1]
        self.train_label = self.train_label.astype(np.int32)    # [60000]
        self.test_label = self.test_label.astype(np.int32)      # [10000]
        self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0]

    def get_batch(self, batch_size):
        # 从数据集中随机取出batch_size个元素并返回
        index = np.random.randint(0, self.num_train_data, batch_size)
        return self.train_data[index, :], self.train_label[index]

在 TensorFlow 中,图像数据集的一种典型表示是 [图像数目,长,宽,色彩通道数] 的四维张量。在上面的 DataLoader 类中, self.train_data 和 self.test_data 分别载入了 60,000 和 10,000 张大小为 28*28 的手写体数字图片。由于这里读入的是灰度图片,色彩通道数为 1(彩色 RGB 图像色彩通道数为 3),所以我们使用 np.expand_dims() 函数为图像数据手动在最后添加一维通道。

二、模型的构建: tf.keras.Model 和 tf.keras.layers

该模型输入一个向量(比如这里是拉直的 1×784 手写体数字图片),输出 10 维的向量,分别代表这张图片属于 0 到 9 的概率。

class MLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.flatten = tf.keras.layers.Flatten()    # Flatten层将除第一维(batch_size)以外的维度展平
        self.dense1 = tf.keras.layers.Dense(units=100, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):         # [batch_size, 28, 28, 1]
        x = self.flatten(inputs)    # [batch_size, 784]
        x = self.dense1(x)          # [batch_size, 100]
        x = self.dense2(x)          # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

三、模型的训练: tf.keras.losses 和 tf.keras.optimizer

定义一些模型超参数:

num_epochs = 5
batch_size = 50
learning_rate = 0.001

实例化模型和数据读取类,并实例化一个 tf.keras.optimizer 的优化器(这里使用常用的 Adam 优化器):

model = MLP()
data_loader = MNISTLoader()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

然后迭代进行以下步骤:

  1. 从 DataLoader 中随机取一批训练数据;
  2. 将这批数据送入模型,计算出模型的预测值;
  3. 将模型预测值与真实值进行比较,计算损失函数(loss)。这里使用 tf.keras.losses 中的交叉熵函数作为损失函数;
  4. 计算损失函数关于模型变量的导数;
  5. 将求出的导数值传入优化器,使用优化器的 apply_gradients 方法更新模型参数以最小化损失函数

具体代码实现如下:

    num_batches = int(data_loader.num_train_data / / batch_size * num_epochs)
    for batch_index in range(num_batches):
        X, y = data_loader.get_batch(batch_size)
        with tf.GradientTape() as tape:
            y_pred = model(X)
            loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)
            loss = tf.reduce_mean(loss)
            print("batch %d: loss %f" % (batch_index, loss.numpy()))
        grads = tape.gradient(loss, model.variables)
        optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))

请添加图片描述

四、模型的评估: tf.keras.metrics

最后,我们使用测试集评估模型的性能。这里,我们使用 tf.keras.metrics 中的 SparseCategoricalAccuracy 评估器来评估模型在测试集上的性能,该评估器能够对模型预测的结果与真实结果进行比较,并输出预测正确的样本数占总样本数的比例。我们迭代测试数据集,每次通过 update_state() 方法向评估器输入两个参数: y_pred 和 y_true ,即模型预测出的结果和真实结果。评估器具有内部变量来保存当前评估指标相关的参数数值(例如当前已传入的累计样本数和当前预测正确的样本数)。迭代结束后,我们使用 result() 方法输出最终的评估指标值(预测正确的样本数占总样本数的比例)。

在以下代码中,我们实例化了一个 tf.keras.metrics.SparseCategoricalAccuracy 评估器,并使用 For 循环迭代分批次传入了测试集数据的预测结果与真实结果,并输出训练后的模型在测试数据集上的准确率。

    sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    num_batches = int(data_loader.num_test_data // batch_size)
    for batch_index in range(num_batches):
        start_index, end_index = batch_index * batch_size, (batch_index + 1) * batch_size
        y_pred = model.predict(data_loader.test_data[start_index: end_index])
        sparse_categorical_accuracy.update_state(y_true=data_loader.test_label[start_index: end_index], y_pred=y_pred)
    print("test accuracy: %f" % sparse_categorical_accuracy.result())

参考资料

TensorFlow 模型建立与训练

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐