项目链接:https://github.com/qiufengqijun/mini_qwen


预训练
微调sft
偏好dpo
数据
16B token
9M条
60K 条
训练时间(h)
25
43
1
epoch数
1
3
3
设备
6*H800
6*H800
6*H800
batch_size
1152
1152
384
学习率
1e-4
1e-5
5e-7
序列长度
1024
1024
1024
训练策略
zero-2
zero-2
zero-2

模型训练

训练方式

  • 全部流程都使用Accelerate和deepspeed进行分布式训练,使用flash_attention_2进行加速;

  • 预训练:使用Trainer进行训练,并参考LLaMA-Factory,对数据进行序列打包(sequences packing);

  • SFT:使用TRL中的SFTTrainer进行训练;

  • DPO:使用TRL中的DPOTrainer进行训练;

预训练

  1. 复读现象:通过预训练发现,即时更改了序列打包方式,也无法纠正复读现象;

  2. 数据多样性:可能数据多样性不够丰富,数据中的标点符号较多,导致模型误认为标点符号重要,所以会输出过度的标点符号;

  3. 复读现象:测试过官方的Qwen2.5-0.5B和Qwen2.5-1.5B模型,发现复读严重程度近似。但是对比Qwen2.5-0.5B-Instruct发现Instruct版本较轻。也许是微调改善了复读情况,单依然存在。其中的原因或许是,相比预训练,微调过程中的文本含有人类更偏好的格式化结构,使得模型能够更容易理解用户问题。

SFT微调

  1. 复读现象:随着epoch增加,复读现象减轻,但是依然存在;

  2. 知识注入:发现模型知道自己是谁,判断微调阶段不仅学习人类对话的格式,也可以学到新知识。

DPO训练

  1. 复读现象:依然存在;

  2. 性能降低:模型性能并未明显提升,或许是数据规模、数据质量、模型优化技巧达不到做DPO的要求;

其它

  1. 数据处理:除了user和assistant信息,还应该添加system信息,从而设定不同类别的角色。建议50%的数据使用统一的system信息,剩下部分按照类别添加不同的system信息,有助于角色扮演的泛化能力。

  2. 模型保存:可以按照只保存模型,只保存几个模型,按epoch保存模型进行设定TrainingArguments中的参数。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐