• scrapy Engine负责模块间的通信

  • 各个模块和scrapy引擎之间可以添加一层或多层中间件,负责对出入该模块的UR2IM对象进行处理。

scrapy的安装

参考官方文档,不再赘述。官方文档:https://scrapy-chs.readthedocs.io/zh_CN/0.24/intro/install.html

三、scrapy实战:50行代码爬取全站短视频

python的优雅之处在于能够让开发者专注于业务逻辑,花更少的时间在枯燥的代码编写调试上。scrapy无疑完美诠释了这一精神。

开发爬虫的一般步骤是:

  • 确定要爬取的数据(item)

  • 找到数据所在页面的url

  • 找到页面间的链接关系,确定如何跟踪(follow)页面

  • 那么,我们一步一步来。

既然是使用scrapy框架,我们先创建项目:

1 scrapy startproject DFVideo

紧接着,我们创建一个爬虫:

scrapy genspider -t crawl DfVideoSpider eastday.com

这是我们发现在当前目录下已经自动生成了一个目录:DFVideo

目录下包括如图文件:

spiders文件夹下,自动生成了名为DfVideoSpider.py的文件。

爬虫项目创建之后,我们来确定需要爬取的数据。在items.py中编辑:

import scrapy

class DfvideoItem(scrapy.Item):

define the fields for your item here like:

name = scrapy.Field()

video_url = scrapy.Field()#视频源url

video_title = scrapy.Field()#视频标题

video_local_path = scrapy.Field()#视频本地存储路径

接下来,我们需要确定视频源的url,这是很关键的一步。

现在许多的视频播放页面是把视频链接隐藏起来的,这就使得大家无法通过右键另存为,防止了视频别随意下载。

但是只要视频在页面上播放了,那么必然是要和视频源产生数据交互的,所以只要稍微抓下包就能够发现玄机。

这里我们使用fiddler抓包分析。

发现其视频播放页的链接类似于:video.eastday.com/a/180926221513827264568.html?index3lbt

视频源的数据链接类似于:mvpc.eastday.com/vyule/20180415/20180415213714776507147_1_06400360.mp4

有了这两个链接,工作就完成了大半:

在DfVideoSpider.py中编辑

-- coding: utf-8 --

import scrapy

from scrapy.loader import ItemLoader

from scrapy.loader.processors import MapCompose,Join

from DFVideo.items import DfvideoItem

from scrapy.linkextractors import LinkExtractor

from scrapy.spiders import CrawlSpider, Rule

import time

from os import path

import os

class DfvideospiderSpider(CrawlSpider):

name = ‘DfVideoSpider’

allowed_domains = [‘eastday.com’]

start_urls = [‘http://video.eastday.com/’]

rules = (

Rule(LinkExtractor(allow=r’video.eastday.com/a/\d+.html’),

callback=‘parse_item’, follow=True),

)

def parse_item(self, response):

item = DfvideoItem()

try:

item[“video_url”] = response.xpath(‘//input[@id=“mp4Source”]/@value’).extract()[0]

item[“video_title”] = response.xpath(‘//meta[@name=“description”]/@content’).extract()[0]

#print(item)

item[“video_url”] = ‘http:’ + item[‘video_url’]

yield scrapy.Request(url=item[‘video_url’], meta=item, callback=self.parse_video)

except:

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

mg-blog.csdnimg.cn/c741a91b05a542ba9dc8abf2f2f4b1af.png)

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐