大数据-玩转数据-Spark-Structured Streaming 容错(python版)
大数据-玩转数据-Spark-Structured Streaming 容错(python版)说明:由于网络问题,链路中断,系统崩溃,JVM故障都会导致数据流的运行结果出现错误,Spark设计了输入源,执行引擎和接收器多个松散耦合组件隔离故障。输入源通过位置偏移量来记录目前所处位置,引擎通过检查点保存中间状态,接收器使用“幂等”的接收器来保障输出的稳定性。我们希望数据是它产生的时间,而不是到达的时
·
大数据-玩转数据-Spark-Structured Streaming 容错(python版)
说明:
由于网络问题,链路中断,系统崩溃,JVM故障都会导致数据流的运行结果出现错误,Spark设计了输入源,执行引擎和接收器多个松散耦合组件隔离故障。
输入源通过位置偏移量来记录目前所处位置,引擎通过检查点保存中间状态,接收器使用“幂等”的接收器来保障输出的稳定性。
我们希望数据是它产生的时间,而不是到达的时间,Spark模型当中,事件时间是数据中的一列,为了避免存储空间无限扩大,同时还引入“水印”机制,将超过时间阈值的数据抛弃掉。
代码举例
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# 导入需要用到的模块
import os
import shutil
from functools import partial
from pyspark.sql import SparkSession
from pyspark.sql.functions import window
from pyspark.sql.types import StructType, StructField
from pyspark.sql.types import TimestampType, StringType
# 定义CSV文件的路径常量
TEST_DATA_DIR = '/tmp/testdata/'
TEST_DATA_DIR_SPARK = 'file:///tmp/testdata/'
# 测试的环境搭建,判断CSV文件夹是否存在,如果存在则删除旧数据,并建立文件夹
def test_setUp():
if os.path.exists(TEST_DATA_DIR):
shutil.rmtree(TEST_DATA_DIR, ignore_errors=True)
os.mkdir(TEST_DATA_DIR)
# 测试环境的恢复,对CSV文件夹进行清理
def test_tearDown():
if os.path.exists(TEST_DATA_DIR):
shutil.rmtree(TEST_DATA_DIR, ignore_errors=True)
# 写模拟输入的函数,传入CSV文件名和数据。注意写入应当是原子性的
# 如果写入时间较长,应当先写到临时文件在移动到CSV目录内。
# 这里采取直接写入的方式。
def write_to_cvs(filename, data):
with open(TEST_DATA_DIR + filename, "wt", encoding="utf-8") as f:
f.write(data)
if __name__ == "__main__":
test_setUp()
# 定义模式,为字符串类型的word和时间戳类型的eventTime两个列组成
schema = StructType([
StructField("word", StringType(), True),
StructField("eventTime", TimestampType(), True)])
spark = SparkSession \
.builder \
.appName("StructuredNetworkWordCountWindowedDelay") \
.getOrCreate()
spark.sparkContext.setLogLevel('WARN')
lines = spark \
.readStream \
.format('csv') \
.schema(schema) \
.option("sep", ";") \
.option("header", "false") \
.load(TEST_DATA_DIR_SPARK)
# 定义窗口
windowDuration = '1 hour'
windowedCounts = lines \
.withWatermark("eventTime", "1 hour") \
.groupBy('word', window('eventTime', windowDuration)) \
.count()
query = windowedCounts \
.writeStream \
.outputMode("update") \
.format("console") \
.option('truncate', 'false') \
.trigger(processingTime="8 seconds") \
.start()
# 写入测试文件file1.cvs
write_to_cvs('file1.cvs', """
正常;2018-10-01 08:00:00
正常;2018-10-01 08:10:00
正常;2018-10-01 08:20:00
""")
# 处理当前数据
query.processAllAvailable()
# 这时候事件时间更新到上次看到的最大的2018-10-01 08:20:00
write_to_cvs('file2.cvs', """
正常;2018-10-01 20:00:00
一小时以内延迟到达;2018-10-01 10:00:00
一小时以内延迟到达;2018-10-01 10:50:00
""")
# 处理当前数据
query.processAllAvailable()
# 这时候事件时间更新到上次看到的最大的2018-10-01 20:00:00
write_to_cvs('file3.cvs', """
正常;2018-10-01 20:00:00
一小时外延迟到达;2018-10-01 10:00:00
一小时外延迟到达;2018-10-01 10:50:00
一小时以内延迟到达;2018-10-01 19:00:00
""")
# 处理当前数据
query.processAllAvailable()
query.stop()
test_tearDown()

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。
更多推荐
所有评论(0)