OpenAI发布了其根据自身技术研发与产品开发的通往AGI的五级量表。OpenAI 将 AI 开发分为五个阶段,每个阶段代表更高级的能力水平:

img

目前OpenAI向多Agent系统迈进与第三阶段的目标一致,其中 AI Agent应代表用户执行操作,从而提高他们的能力和效率。按照现在AI的发展速度,GUI-Agent将能够快速接管一定的企业流程自动化,加上RAG技术的快速迭代翻新,5年之后差不多能够实现。但实现这个目标,却不一定能够实现AGI的目标。

当然,还要看大语言模型的发展进程,毕竟LLM Based Agent的重点在于LLM。

img

AI Agent的5个级别

我们常说的Agent其实也是泛指自主智能体,确切的说是自主随着人们的进一步探索,更加详细的AI Agents 5级量化呼之欲出。

下面这张图来自于 Kore.ai首席宣传官COBUS GREYLING,完整而详细的描绘了不同级别的AI Agent的技术、性能、能力、关键特征和用例。

img

通过具体技术描述的五级AI Agent,如下:

  1. L0级别(无AI):这个级别的AI Agent不具备人工智能,仅有具备感知能力的工具加上行动功能。它们仅依赖于基础规则和手动操作,无法展现智能化的行为。

  2. L1级别(基于规则的AI):这个级别的AI Agent采用基于规则的人工智能系统。它们能够根据预设的规则来执行任务,但缺乏自我学习和适应新情况的能力。

  3. L2级别(基于模仿学习/强化学习的AI):这个级别的AI Agent使用模仿学习(IL)或强化学习(RL)的人工智能,取代基于规则的系统,并增强推理与决策功能。它们能够通过学习来改进行为,以更好地适应环境。

  4. L3级别(基于大型语言模型的AI):这个级别的AI Agent采用大型语言模型(LLM)的人工智能,替代IL/RL系统,并增设记忆与反思模块。它们能够处理更复杂的任务,并且具有一定的记忆和自我反思能力。

  5. L4级别(自主学习和泛化):在L3级别的基础上,L4级别的AI Agent提升了自主学习和泛化能力,能够更广泛地应用学到的知识,并在不同情境下进行泛化。

  6. L5级别(个性和协作行为):在L4级别的基础上,L5级别的AI Agent融入了个性(情感与性格)和协作行为(多智能体交互),它们不仅能够独立学习,还能与其他智能体协作,展现出更接近人类的行为特征。

需要说明的是,这张图表也是一个矩阵图。X轴(性能)从下到上展示随着智能体级别的增长性能逐步提升,Y轴(一般性)从左到右展示了不同级别智能体的各项属性。

img

这张图最具价值的地方在于,它不仅展示出了智能体的技术路径,还通过特征与案例让大家更容易理解各级智能体,并用具象化数字表述出了它们的能力,对于企业应用智能体和技术企业开发智能体都有一定的指导作用。

从这张图表来看,目前市面上以及大家在用的AI Agent主要为第三级,且正在向第四级发展。整张图片描绘了一个非常有“钱景”的AI Agent未来画卷。

  • AI Agent应用程序利用一个或多个语言模型作为其核心基础或主干,动态生成响应和操作。

  • 这些应用程序管理状态和转换,同时实时构建事件链以解决特定的用户查询,从而提供自适应解决方案。

  • AI Agent擅长处理模棱两可或隐含的问题,将它们分解为连续的子步骤,并通过行动、观察和反思的循环迭代处理,直到达到最终解决方案。

  • 延迟和成本管理对于对话式实施至关重要,可以平衡响应能力与资源效率。Agentic 实现的延迟可能是个问题。

  • 可检查性和可观察性对于生产实施至关重要,开发了强大的机制来揭示AI Agent所经过的状态和路径,从而确保透明度。

  • 为了完成任务,AI Agent可以使用各种工具,每个工具都有明确的目的——无论是进行 API 调用、执行计算还是搜索 Web。

  • 人机协同 (HITL) 可以用作辅助工具,使AI Agent能够在需要时寻求人工输入,从而扩展其操作能力。

  • 可以无缝集成新的AI Agent工具以扩展功能,从而允许持续适应和增强自主AI Agent功能。

  • AI Agent拥有真正的自主权,独立做出决策和执行行动,需要最少的人工监督。自主性级别由 AI Agent 可以循环的迭代次数设置,以得出结论;以及可供使用的工具数量。

  • 凭借先进的灵活性,AI Agent可以根据情境需求动态选择和排序工具,采用推理和自适应策略来解决出现的复杂任务。

智能体自动化的五个级别

在五级AI Agent的基础上,自动化领域开始探索智能体自动化(Agentic Automation,也称作代理自动化)。而一旦Agent成为元宇宙一样的流行词汇,也意味着更多人并不了真正解它。所以为了消除这些噪音并帮助更多公司设定他们的目标,Semae.ai引入了一种根据AI Agent功能和结果对AI Agent进行分类的方法。这也是一个智能体分类方法,不过角度换到了自动化。如下:

img

下面,是对于每一级智能体自动化的具体解读。

0 级:固定自动化

在基层,固定自动化不代表真正的Agent行为。它相当于传统的机器人流程自动化 (RPA),具有一组固定的规则和完全确定的结果。没有计划或执行控制,因为一切都是在编程过程中预先确定的。人工交互仅限于处理异常,并且任务范围仅限于基于规则的逻辑。

示例:表单、网站和业务应用程序的数据输入。数据收集和抓取。

第 1 级:AI 增强自动化

首先,第一级在个人决策层面介绍基本的Agent行为。它本质上是固定的自动化,其中一些步骤由大型语言模型 (LLM) 增强。虽然与传统自动化相比,它提供的好处有限,但它代表了通过约束决策迈向更高级Agent的第一步。

示例:对客户支持电子邮件进行分类并将其转发给合适的团队。

第 2 级:Agent助理

随着我们上升一个级别,我们看到能够使用工具调用的特定任务Agent自动化助理。这些系统可以解释用户意图,确定所需的结果,并采取适当的行动——例如总结文本、生成内容或使用特定工具。但是,它们仅限于静态的短期计划。

示例:用于搜索、汇总和起草电子邮件的对话式 co-pilot。

第 3 级:计划和反思

今天,这个级别通常被称为 AI Agent,它是第一个表现出受限自主性的级别。这些Agent系统可以根据给定的意图创建计划,执行它们,反思它们的成功,并在必要时在执行过程中修改计划。当今许多高级 AI Agent都在此级别运行,能够进行多个推理循环和规划以实现预期结果。

示例:根据一组人工级别的规则和准则,根据内部系统对账一张100页的发票。处理流程流和数据中的复杂性、模糊性和可变性。

第4 级:自我完善

4 级Agent自动化将能够在有或没有人工协作的情况下进行有意义的自我提升。它可以检查和修改其指令和学习数据,创建新工具,并连接到新的数据源。这种级别的自动化使Agent能够跟上不断变化的任务和环境。虽然目前是理论上的,但我们知道 4 级系统是可能的。然而,今天的 AI 模型缺乏在实际业务应用程序中支持它们的推理能力。

示例:复杂发票对账的Agent,可以通过最少的人工协调添加新供应商,并随着时间的推移提高准确性。

第 5 级:自主性

最高级别的Agent自动化代表了许多人认为的通用人工智能 (AGI)。这些假设的Agent表现出原创思维,并将综合解决以前看不见的任务。利用先进的逻辑推理和创造力,5 级特工将能够解决初始训练之外的复杂问题。

示例:数字知识工作者能够在没有监督的情况下端到端处理复杂任务。

img

对于分类和了解智能体自动化和AI Agent的功能,这个框架提供了一种有用的方法。通过明确定义这些级别,可以更好地沟通AI系统,设定切合实际的期望,并规划智能体自动化开发的前进道路。

需要注意的是,目前我们主要在前三个级别内运营。超出此水平代表未来的可能性,这些可能性将改善我们的工作方式。随着技术迭代和应用发展,按照作者的意思,这个框架应该也会会不断发展以适应 AI 功能的新突破和见解。

从自动化角度来看市场的话,目前更多企业尚处于L0-L1,从L0、L1到L3,是广大技术供应商的机会。

自主工作的六个层次

AI Agent不只影响了企业数字化技术的应用,更影响了广大组织的业务架构与作业方式。Agent的终极发展目标是Autonomous Agent能够实现主动响应和自主运行,所以在Agentic AI影响下的工作最终也将发展成为自主工作(autonomous work)。

未来十年不断改进的AI资源将对企业和人类劳动力产生双重影响。AI将产生广泛的增强效应,接管低价值的任务,并使人类能够将精力集中在更具战略性和创造性的工作上。

在这个不完整但仍然相对坚实的基础上,受到汽车工程师协会创建的“驾驶自动化的6个级别”的启发(PS:驶自动化已经启发了很多行业),Salesforce首席数字宣传官Vala Afshar等人开发了一个认知框架-自主工作的六个层次,用于反映AI 能力的演变以及它们将如何在未来十年左右对公司产生影响。

img

下面是对这个框架各维度的简单解释。

级别(Level)

每个自动化工作级别都由数字(0-6)和标题标识。标题指的是AI在该级别可以完成的工作量和复杂性。它本质上是一个通用的工作分解,从最小和最简单的工作单元开始,即一个任务(1级)。

比任务高一级的是子流程(2级),指的是通常按顺序执行以完成业务流程的一个离散部分的一组任务,例如确保所有相关信息已准确无误地收集完整以开启客户案例。

在3级,AI有能力完成一个业务流程,如接收客户订单、从开放到关闭管理客户案例,以及筛选潜在客户。

在4级,AI可以完成从开始到结束的几个流程,执行通常按角色分配的大部分工作,如销售代表、营销专家或服务Agent。我们在这里关注的是典型的商业运营,但在制造业和其他类型的运营中也同样适用。

阶段(Phase)

六个自动化工作级别并不代表AI的线性发展轨迹。AI不会以传统的职业晋升方式在组织中发展到更高级别的角色。相反,在其发展过程中将有两个非常不同的阶段。

第一个是1-3级,我们可以将其描述为增强阶段,在这个阶段数字助手将使人类员工能够发挥最大的工作能力,并为他们创造新的机会。

第二个是4-6级,这是替代阶段,在这个阶段数字Agent将从人类那里承担越来越多的责任,并随着时间的推移开始取代他们。

AI角色(Al Role)

在这里,我们从非技术的角度描述了AI的主要能力以及它与人类同事的关系。如果有兴趣,我们将在后续提供每个级别的更深入的技术视角,但现在我们希望突出人与AI之间的关系。

人类角色(Human Role)

这是AI角色的另一面,同样关注人类与AI之间的关系以及他们的相对责任和能力。

采纳(Adoption)

预计主流采纳者(广泛包括早期和晚期大多数采纳者类别)开始在每个级别应用AI的日期。创新者和早期采纳者会更早,而落后者可能会更晚,除非危机改变了他们的发展轨迹。

采纳率将因行业而异,甚至因部门而异。即使在员工层面,采纳过程也不太可能是平滑的。有些人会欣然接受AI,尽管他们更可能接受的是让他们从单调乏味的工作部分中解放出来的AI,而不是承诺(或威胁)执行更有创造性和/或战略性部分的AI。

其他人,特别是那些担心自己的工作将被AI完全取代的人,可能会抵制整个过程。总的来说,我们已经看到预测性和生成性AI在大多数行业中的应用实例,我们知道更复杂和有能力的机器人和Agent即将到来。

img

自主工作对商业的影响包括三个重要方面:

首先,AI的发展将分为增强(1-3级)和替代(4级以上)两个阶段。增强阶段中,AI将提升工作效率,释放人类从事战略和创造性工作。替代阶段中,AI将快速取代人类工作。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

GitCode 天启AI是一款由 GitCode 团队打造的智能助手,基于先进的LLM(大语言模型)与多智能体 Agent 技术构建,致力于为用户提供高效、智能、多模态的创作与开发支持。它不仅支持自然语言对话,还具备处理文件、生成 PPT、撰写分析报告、开发 Web 应用等多项能力,真正做到“一句话,让 Al帮你完成复杂任务”。

更多推荐